StructRank: A New Approach for Ligand-Based Virtual Screening | all4bioinformatics
Breaking News
Loading...

Tuesday, 18 June 2013

StructRank: A New Approach for Ligand-Based Virtual Screening

Abstract Image

Journal of Chemical Information and Modeling


Abstract

Screening large libraries of chemical compounds against a biological target, typically a receptor or an enzyme, is a crucial step in the process of drug discovery. Virtual screening (VS) can be seen as a ranking problem which prefers as many actives as possible at the top of the ranking. As a standard, current Quantitative Structure−Activity Relationship (QSAR) models apply regression methods to predict the level of activity for each molecule and then sort them to establish the ranking. In this paper, we propose a top-k ranking algorithm (StructRank) based on Support Vector Machines to solve the early recognition problemdirectly. Empirically, we show that our ranking approach outperforms not only regression methods but another ranking approach recently proposed for QSAR ranking, RankSVM, in terms of actives found.

google+

linkedin

About Author
  • Donec sed odio dui. Duis mollis, est non commodo luctus, nisi erat porttitor ligula, eget lacinia odio sem nec elit. Sed posuere consecteturDonec sed odio dui. Duis mollis, est non commodo luctus, nisi erat porttitor ligula, eget lacinia odio sem nec elit. Read More

    0 comments:

    POST A COMMENT

     

    Gallery

    About

    About Us